
Lookout for Equipment SDK

Michaël HOARAU

Aug 24, 2023

GETTING STARTED

1 Installation, testing and development 1
1.1 Dependencies . 1
1.2 User installation . 1
1.3 Development . 2

2 User Guide 3
2.1 Introduction . 3
2.2 Dataset management . 3
2.3 Model training . 4
2.4 Evaluating a trained model . 5
2.5 Scheduler management . 7

3 API Documentation 9
3.1 Schema . 9
3.2 Datasets . 10
3.3 Models . 14
3.4 Evaluation . 17
3.5 Scheduler . 19
3.6 Plot . 19

Python Module Index 25

Index 27

i

ii

CHAPTER

ONE

INSTALLATION, TESTING AND DEVELOPMENT

1.1 Dependencies

lookoutequipment requires:

• python (>= 3.6)

• boto3 (>= 1.17.48)

• markdown

• numpy

• pandas

• pyarrow

• s3fs

To run the examples Matplotlib (>=3.0.0) is required.

1.2 User installation

If you already have a working installation of numpy, boto3, pandas. . . you can easily install lookoutequipment using
pip:

pip install lookoutequipment

You can also get the latest version of lookoutequipment by cloning the repository:

git clone https://github.com/aws-samples/amazon-lookout-for-equipment-python-sdk.git
cd lookoutequipment
pip install .

1

Lookout for Equipment SDK

1.3 Development

For more information about our contributing guidelines, please refer to the contribute.

2 Chapter 1. Installation, testing and development

CHAPTER

TWO

USER GUIDE

2.1 Introduction

To build and use and anomaly detection model with Amazon Lookout for Equipment, you need to go through the
following steps:

1. Preparing your time series dataset and your historical maintenance time ranges

2. Upload your data on Amazon S3

3. Create a dataset and ingest the S3 data into it

4. Train a Lookout for Equipment model

5. Download and post-process the evaluation results

6. Configure and start a scheduler

7. Upload fresh data to Amazon S3

8. Download the inference results generated by the scheduler

The Amazon Lookout for Equipment SDK will help you streamline steps 3 to 8. Some sample datasets are also provided
along with some utility functions to tackle steps 1 and 2.

2.2 Dataset management

2.2.1 Creating a dataset

Let’s start by loading a sample dataset and uploading it to a location on S3:

from lookoutequipment import dataset

root_dir = 'expander-data
bucket = '<<YOUR-BUCKET>>' # Replace by your bucket name
prefix = '<<YOUR-PREFIX>>/' # Don't forget the training slash
role_arn = '<<YOUR-ROLE-ARN>>' # An ARN role with access to your S3 data

data = dataset.load_dataset(
dataset_name='expander',
target_dir=root_dir

)
dataset.upload_dataset(root_dir, bucket, prefix)

3

Lookout for Equipment SDK

From there we are going to instantiate a class that will help us manage our Lookout for Equipment dataset:

lookout_dataset = dataset.LookoutEquipmentDataset(
dataset_name='my_dataset',
access_role_arn=role_arn,
component_root_dir=f'{bucket}/{prefix}training-data'

)

You will need to specify an ARN for a role that have access to your data on S3.

The following line creates the dataset in the Lookout for Equipment service. If you log into your AWS Console and
browse to the Lookout for Equipment datasets list you will see an empty dataset:

lookout_dataset.create()

2.2.2 Ingesting data into a dataset

This dataset is empty: let’s ingest our prepared data (note the trailing slash at the end of the prefix):

response = lookout_dataset.ingest_data(bucket, prefix + 'training-data/')

The ingestion process will take a few minutes. If you would like to get a feedback from the ingestion process, you can
enable a waiter by replacing the previous command by the following:

response = lookout_dataset.ingest_data(
bucket,
prefix + 'training-data/',
wait=True,
sleep_time=60

)

2.3 Model training

Once you have ingested some time series data in your dataset, you can train an anomaly detection model:

from lookoutequipment import model

lookout_model = model.LookoutEquipmentModel(model_name='my_model', dataset_name='my_
→˓dataset')
lookout_model.set_time_periods(data['evaluation_start'],

data['evaluation_end'],
data['training_start'],
data['training_end'])

lookout_model.set_label_data(bucket=bucket,
prefix=prefix + 'label-data/',
access_role_arn=role_arn)

lookout_model.set_target_sampling_rate(sampling_rate='PT5M')
response = lookout_model.train()
lookout_model.poll_model_training(sleep_time=300)

You will see a progress status update every five minutes until the training is successful. With the sample dataset used
in this user guide, the training can take up to an hour.

4 Chapter 2. User Guide

Lookout for Equipment SDK

Once your model is trained, you can either check the results over the evaluation period or configure an inference
scheduler.

2.4 Evaluating a trained model

2.4.1 Plot detected events

Once a model is trained, the DescribeModel API from Amazon Lookout for Equipment will record the metrics associ-
ated to the training.

This API returns a dictionnary with two fields of interest to plot the evaluation results: labelled_ranges and
predicted_ranges which respectively contain the known and predicted anomalies in the evaluation range. Use the
following SDK command to get both of these in a Pandas dataframe:

from lookoutequipment import evaluation

LookoutDiagnostics = evaluation.LookoutEquipmentAnalysis(model_name='my_model', tags_
→˓df=data['data'])
predicted_ranges = LookoutDiagnostics.get_predictions()
labeled_range = LookoutDiagnostics.get_labels()

Note: the labeled range from the DescribeModel API, only provides any labelled data falling within the evaluation
range. If you want to plot or use all of them (including the labels falling within the training range), you should use the
original label data by replacing the last line of the previous code snippet by the following code:

labels_fname = os.path.join(root_dir, 'labels.csv')
labeled_range = LookoutDiagnostics.get_labels(labels_fname)

You can then plot one of the original time series signal and add an overlay of the labeled and predicted anomalous
events by levering the plot utilities:

from lookoutequipment import plot

TSViz = plot.TimeSeriesVisualization(timeseries_df=data['data'], data_format='tabular')
TSViz.add_signal(['signal-001'])
TSViz.add_labels(labeled_range)
TSViz.add_predictions([predicted_ranges])
TSViz.add_train_test_split(data['evaluation_start'])
TSViz.add_rolling_average(60*24)
TSViz.legend_format = {'loc': 'upper left', 'framealpha': 0.4, 'ncol': 3}
fig, axis = TSViz.plot()

This code will generate the following plot where you can see:

• A line plot for the signal selected: the part used for training the model appears in blue while the evaluation part
is in gray.

• The rolling average appears as a thin red line overlayed over the time series.

• The labels are shown in a green ribbon labelled “Known anomalies” (by default)

• The predicted events are shown in a red ribbon labelled “Detected events”

2.4. Evaluating a trained model 5

https://docs.aws.amazon.com/lookout-for-equipment/latest/ug/API_DescribeModel.html

Lookout for Equipment SDK

2.4.2 Plot signal distribution

You might be curious about why Amazon Lookout for Equipment detected an anomalous event. Sometime, looking at
a few of the time series is enough. But sometime, you need to dig deeper.

The following function, aggregate the signal importance of every signals over the evaluation period and sum these
contributions over time for each signal. Then, it takes the top 8 signals and plot two distributions: one with the values
each signal takes during the normal periods (present in the evaluation range) and a second one with the values taken
during all the anomalous events detected in the evaluation range. This will help you visualize any significant shift of
values for the top contributing signals.

You can also restrict these histograms over a specific range of time by setting the start and end arguments of the
following function with datetime values:

from lookoutequipment import plot

TSViz = plot.TimeSeriesVisualization(timeseries_df=data['data'], data_format='tabular')
TSViz.add_predictions([predicted_ranges])
fig = TSViz.plot_histograms(freq='5min')

This code will generate the following plot where you can see a histogram for the top 8 signals contributing to the
detected events present in the evaluation range of the model:

6 Chapter 2. User Guide

Lookout for Equipment SDK

2.5 Scheduler management

Once a model is successfully trained, you can configure a scheduler that will run regular inferences based on this model:

from lookout import scheduler

lookout_scheduler = scheduler.LookoutEquipmentScheduler(
scheduler_name='my_scheduler',
model_name='my_model'

)

scheduler_params = {
'input_bucket': bucket,
'input_prefix': prefix + 'inference-data/input/',
'output_bucket': bucket,
'output_prefix': prefix + 'inference-data/output/',
'role_arn': role_arn,
'upload_frequency': 'PT5M',
'delay_offset': None,
'timezone_offset': '+00:00',
'component_delimiter': '_',
'timestamp_format': 'yyyyMMddHHmmss'

}

lookout_scheduler.set_parameters(**scheduler_params)

When the scheduler wakes up, it looks for the appropriate files in the input location configured above. It also opens
each file and only keep the data based on their timestamp. Use the following command to prepare some inference data
using the sample we have been using throughout this user guide:

dataset.prepare_inference_data(
root_dir='expander-data',
sample_data_dict=data,

(continues on next page)

2.5. Scheduler management 7

Lookout for Equipment SDK

(continued from previous page)

bucket=bucket,
prefix=prefix

)
response = lookout_scheduler.create()

This will create a scheduler that will process one file every 5 minutes (matchin the upload frequency set when con-
figuring the scheduler). After 15 minutes or so, you shoud have some results available. To get these results from the
scheduler in a Pandas dataframe, you just have to run the following command:

results_df = lookout_scheduler.get_predictions()

In this dataframe, you will find one row per event (i.e. one row per scheduler execution). You can then plot the feature
importance of any given event. For instance, the following code will plot the feature importance for the first inference
execution result:

event_details = pd.DataFrame(results_df.iloc[0, 1:]).reset_index()
fig, ax = plot.plot_event_barh(event_details)

This is the result you should have with the sample data:

Once you’re done, do not forget to stop the scheduler to stop incurring cost:

scheduler.stop()

You can restart your scheduler with a call to scheduler.start() and when you don’t have any more use for your
scheduler you can delete a stopped scheduler by running scheduler.delete().

8 Chapter 2. User Guide

CHAPTER

THREE

API DOCUMENTATION

Full API documentation of the lookoutequipment Python package.

3.1 Schema

schema.create_data_schema_from_dir(root_dir) Generates a data schema compatible for Lookout for
Equipment from a local directory

schema.create_data_schema_from_s3_path (s3_path)Generates a data schema compatible for Lookout for
Equipment from an S3 directory

schema.create_data_schema(component_fields_map) Generates a JSON formatted string from a dictionary

3.1.1 create_data_schema_from_dir

src.lookoutequipment.schema.create_data_schema_from_dir(root_dir)
Generates a data schema compatible for Lookout for Equipment from a local directory

Parameters root_dir (string) – a path pointing to the root directory where all the CSV files are
located

Returns a JSON-formatted string ready to be used as a schema for a Lookout for Equipment dataset

Return type string

3.1.2 create_data_schema_from_s3_path

src.lookoutequipment.schema.create_data_schema_from_s3_path(s3_path)
Generates a data schema compatible for Lookout for Equipment from an S3 directory

Parameters s3_path (string) – a path pointing to the root directory on S3 where all the CSV files
are located

Returns a JSON-formatted string ready to be used as a schema for a Lookout for Equipment dataset

Return type string

9

Lookout for Equipment SDK

3.1.3 create_data_schema

src.lookoutequipment.schema.create_data_schema(component_fields_map: Dict)
Generates a JSON formatted string from a dictionary

Parameters component_fields_map (dict) – a dictionary containing a field maps for the dataset
schema

Returns a JSON-formatted string ready to be used as a schema for a dataset

Return type string

3.2 Datasets

dataset.list_datasets([dataset_name_prefix, . . .]) List all the Lookout for Equipment datasets available in
this account.

dataset.load_dataset(dataset_name, target_dir) This function can be used to download example datasets
to run Amazon Lookout for Equipment on.

dataset.upload_dataset(root_dir, bucket, prefix) Upload a local dataset to S3.
dataset.prepare_inference_data(root_dir, . . .) This function prepares sequence of data suitable as input

for an inference scheduler.
dataset.generate_replay_data(dataset_name,
. . .)

Generates inference input data from the training data to
test a scheduler that would be configured for a model
trained with this dataset.

dataset.LookoutEquipmentDataset(. . . [, . . .]) A class to manage Lookout for Equipment datasets

3.2.1 list_datasets

src.lookoutequipment.dataset.list_datasets(dataset_name_prefix=None, max_results=50)
List all the Lookout for Equipment datasets available in this account.

Parameters

• dataset_name_prefix (string) – prefix to filter out all the datasets which names starts
by this prefix. Defaults to None to list all datasets.

• max_results (integer) – Max number of datasets to return (default: 50)

Returns A list with all the dataset names found in the current region

Return type list of strings

3.2.2 load_dataset

src.lookoutequipment.dataset.load_dataset(dataset_name, target_dir)
This function can be used to download example datasets to run Amazon Lookout for Equipment on.

Parameters

• dataset_name (string) – Can only be ‘expander’ at this stage

• target_dir (string) – Location where to download the data: this location must be read-
able and writable

10 Chapter 3. API Documentation

Lookout for Equipment SDK

Returns dictionnary with data dataframe, labels dataframe, training start and end datetime, evalua-
tion start and end datetime, and the tags description dataframe

Return type data (dict)

3.2.3 upload_dataset

src.lookoutequipment.dataset.upload_dataset(root_dir, bucket, prefix)
Upload a local dataset to S3. This method will look for a training-data and a label-data in the root_dir passed
in argument and upload all the content from both these folders to S3.

Parameters

• root_dir (string) – Path to the local data

• bucket (string) – Amazon S3 bucket name

• prefix (string) – Prefix to a directory on Amazon S3 where to upload the data. This prefix
MUST end with a trailing slash “/”

3.2.4 prepare_inference_data

src.lookoutequipment.dataset.prepare_inference_data(root_dir, sample_data_dict, bucket, prefix,
num_sequences=3, frequency=5,
start_date=None)

This function prepares sequence of data suitable as input for an inference scheduler.

Parameters

• root_dir (string) – Location where the inference data will be written

• sample_data_dict (dict) – A dictionnary with the sample data as output by
load_dataset() method

• bucket (string) – Amazon S3 bucket name

• prefix (string) – Prefix to a directory on Amazon S3 where to upload the data. This prefix
MUST end with a trailing slash “/”

• num_sequences (integer) – Number of short time series sequences to extract: each se-
quence will be used once by a scheduler. Defaults to 3: a scheduler will run 3 times before
failing (unless you provide additional suitable files in the input location)

• frequency (integer) – The scheduling frequency in minutes: this MUST match the re-
sampling rate used to train the model (defaults to 5 minutes)

• start_date (string or datetime) – The datetime to start the extraction from. Default
is None: in this case this method will start looking at date located at the beginning of the
evaluation period associated to this sample

3.2. Datasets 11

Lookout for Equipment SDK

3.2.5 generate_replay_data

src.lookoutequipment.dataset.generate_replay_data(dataset_name, replay_start_timestamp,
upload_frequency, replay_days=1,
inference_timezone='UTC')

Generates inference input data from the training data to test a scheduler that would be configured for a model
trained with this dataset. The data will be output in an S3 location next to your training data S3 location.

Parameters

• dataset_name (string) – Lookout for Equipment dataset_name containing the training
data for replaying.

• replay_start_date (string) – Point in time in the training data from which to begin
generating replay data. Example: “2020-10-01 00:00:00”

• upload_frequency (string) – How often replay data is uploaded to the S3 bucket for the
inference input data. Valid Values are PT5M, PT10M, PT15M, PT30M, or PT1H.

• replay_days (integer) – Duration of the replay data in days (default: 1)

• inference_timezone (string) – Indicates the timezone for the inference replay dataset.
(default: ‘UTC’)

Returns

(boolean) True if no problem detected, otherwise a list of sequences that could not be generated
(which will trigger a failed scheduler execution)

3.2.6 LookoutEquipmentDataset

class src.lookoutequipment.dataset.LookoutEquipmentDataset(dataset_name, access_role_arn,
component_fields_map=None,
component_root_dir=None)

A class to manage Lookout for Equipment datasets

Attributes

components_list list of components part of the schema of this dataset
dataset_name string with the name given to the dataset
dataset_schema string with a JSON-formatted string describing the

data schema the dataset must conform to
ingestion_job_id string the ID of the data ingestion job
ingestion_job_response string with a JSON-formatted string describing the

response details of a data ingestion job.
role_arn string containing the role ARN necessary to access

the S3 location where the datasets are stored
schema dict dictionnary containing the schema of this

dataset if it was already created in Lookout for Equip-
ment

12 Chapter 3. API Documentation

Lookout for Equipment SDK

Methods

__init__(dataset_name, access_role_arn[, . . .]) Create a new instance to configure all the at-
tributes necessary to manage a Lookout for Equip-
ment dataset.

create() Creates a Lookout for Equipment dataset
delete([force_delete]) Deletes the dataset
get_component_field_map(component)

ingest_data(bucket, prefix[, wait, sleep_time]) Ingest data from an S3 location into the dataset
list_models() List all the models trained with this dataset
poll_data_ingestion([sleep_time]) This function polls the data ingestion describe API

and prints a status until the ingestion is done.

__init__(dataset_name, access_role_arn, component_fields_map=None, component_root_dir=None)
Create a new instance to configure all the attributes necessary to manage a Lookout for Equipment dataset.

Parameters

• dataset_name (string) – the name of the dataset to manage

• component_fields_map (string) – the mapping of the different fields associated to this
dataset. Either component_root_dir or component_fields_map must be provided.
Defaults to None.

• component_root_dir (string) – the root location where the sensor data are stored. Ei-
ther component_root_dir or component_fields_map must be provided. Defaults to
None. Can be a local folder or an S3 location.

• access_role_arn (string) – the ARN of a role that will allow Lookout for Equipment
to read data from the data source bucket on S3

create()
Creates a Lookout for Equipment dataset

Returns Response of the create dataset API

Return type string

delete(force_delete=True)
Deletes the dataset

Parameters force_delete (boolean) – if set to True, also delete all the models that are using
this dataset before deleting it. Otherwise, this method will list the attached models (Default:
True)

get_component_field_map(component)

ingest_data(bucket, prefix, wait=False, sleep_time=60)
Ingest data from an S3 location into the dataset

Parameters

• bucket (string) – Bucket name where the data to ingest are located

• prefix (string) – Actual location inside the aforementioned bucket

• wait (Boolean) – If True, this function will wait for the ingestion to finish (default to
False)

3.2. Datasets 13

Lookout for Equipment SDK

• sleep_time (integer) – how many seconds should we wait before polling again when
the wait parameter is True (default: 60)

Returns Response of the start ingestion job API call (if wait is False) or of the actual finished
ingestion job (if wait is True)

Return type string

list_models()
List all the models trained with this dataset

Returns A list with the names of every models trained with this dataset

Return type list of strings

poll_data_ingestion(sleep_time=60)
This function polls the data ingestion describe API and prints a status until the ingestion is done.

Parameters sleep_time (integer) – How many seconds should we wait before polling again
(default: 60)

3.3 Models

model.list_models([model_name_prefix, . . .]) List all the models available in the current account
model.LookoutEquipmentModel(model_name, . . .) A class to manage Lookout for Equipment models

3.3.1 list_models

src.lookoutequipment.model.list_models(model_name_prefix=None, dataset_name_prefix=None,
max_results=50)

List all the models available in the current account

Parameters

• model_name_prefix (string) – Prefix to filter on the model name to look for (default:
None)

• dataset_name_prefix (string) – Prefix to filter the dataset name: if used, only models
making use of this particular dataset are returned (default: None)

• max_results (integer) – Max number of datasets to return (default: 50)

Returns List of all the models corresponding to the input parameters (regions and dataset)

Return type List of strings

3.3.2 LookoutEquipmentModel

class src.lookoutequipment.model.LookoutEquipmentModel(model_name, dataset_name)
A class to manage Lookout for Equipment models

dataset_name
The name of the dataset used to train the model attached to a given class instance

Type string

14 Chapter 3. API Documentation

Lookout for Equipment SDK

model_name
The name of the model attached to a given class instance

Type string

create_model_request
The parameters to be used to train the model

Type dict

Methods

__init__(model_name, dataset_name) Create a new instance to configure all the at-
tributes necessary to manage a Lookout for Equip-
ment model.

delete() Delete the current model
poll_model_training([sleep_time]) This function polls the model describe API and prints

a status until the training is done.
set_label_data(bucket, prefix, access_role_arn) Tell Lookout for Equipment to look for labelled data

to train the model and where to find them on S3
set_off_condition(off_condition) Configure off-time detection using one of your ma-

chine’s sensors.
set_off_conditions(off_conditions_string) Tells Lookout for Equipment to use one of the signals

as a guide to tell if the asset/process is currently on
or off.

set_subset_schema(field_map) Configure the inline data schema that will let Lookout
for Equipment knows that it needs to select a subset
of all the signals configured at ingestion

set_target_sampling_rate(sampling_rate) Set the sampling rate to use before training the model
set_time_periods(evaluation_start, . . .) Set the training / evaluation time split
train() Train the model as configured with this object

__init__(model_name, dataset_name)
Create a new instance to configure all the attributes necessary to manage a Lookout for Equipment model.

Parameters

• model_name (string) – the name of the model to manage

• dataset_name (string) – the name of the dataset associated to the model

delete()
Delete the current model

Returns The delete model API response in JSON format

Return type string

poll_model_training(sleep_time=60)
This function polls the model describe API and prints a status until the training is done.

Parameters sleep_time (integer) – How many seconds should we wait before polling again
(default: 60)

set_label_data(bucket, prefix, access_role_arn)
Tell Lookout for Equipment to look for labelled data to train the model and where to find them on S3

Parameters

3.3. Models 15

Lookout for Equipment SDK

• bucket (string) – Bucket name where the labelled data can be found

• prefix (string) – Prefix where the labelled data can be found

• access_role_arn (string) – A role that Lookout for Equipment can use to access the
bucket and prefix aforementioned

set_off_condition(off_condition)
Configure off-time detection using one of your machine’s sensors.

Parameters off_condition (string) – Sensor representative of the machine’s on/off state.
Ex: ‘tag_name < 1000’

set_off_conditions(off_conditions_string)
Tells Lookout for Equipment to use one of the signals as a guide to tell if the asset/process is currently on
or off.

Parameters off_conditions_string (string) – A string with the format compo-
nent_nametag_name>0.0 where the condition can either be < or > with a real value ma-
terializing the boundary used to identify off time from on time.

set_subset_schema(field_map)
Configure the inline data schema that will let Lookout for Equipment knows that it needs to select a subset
of all the signals configured at ingestion

Parameters field_map – string A JSON string describing which signals to keep for this model

set_target_sampling_rate(sampling_rate)
Set the sampling rate to use before training the model

Parameters sampling_rate (string) – One of [PT1M, PT5S, PT15M, PT1S, PT10M, PT15S,
PT30M, PT10S, PT30S, PT1H, PT5M]

set_time_periods(evaluation_start, evaluation_end, training_start, training_end)
Set the training / evaluation time split

Parameters

• evaluation_start (datetime) – Start of the evaluation period

• evaluation_end (datetime) – End of the evaluation period

• training_start (datetime) – Start of the training period

• training_end (datetime) – End of the training period

train()
Train the model as configured with this object

Returns The create model API response in JSON format

Return type string

16 Chapter 3. API Documentation

Lookout for Equipment SDK

3.4 Evaluation

evaluation.LookoutEquipmentAnalysis(. . .) A class to manage Lookout for Equipment result analysis

3.4.1 LookoutEquipmentAnalysis

class src.lookoutequipment.evaluation.LookoutEquipmentAnalysis(model_name, tags_df)
A class to manage Lookout for Equipment result analysis

model_name
the name of the Lookout for Equipment trained model

Type string

predicted_ranges
a Pandas dataframe with the predicted anomaly ranges listed in chronological order with a Start and End
columns

Type pandas.DataFrame

labelled_ranges
A Pandas dataframe with the labelled anomaly ranges listed in chronological order with a Start and End
columns

Type pandas.DataFrame

df_list
A list with each time series into a dataframe

Type list of pandas.DataFrame

Methods

__init__(model_name, tags_df) Create a new analysis for a Lookout for Equipment
model.

compute_histograms([index_normal, . . .]) This method loops through each signal and computes
two distributions of the values in the time series: one
for all the anomalies found in the evaluation period
and another one with all the normal values found in
the same period.

get_labels([labels_fname]) Get the labelled ranges as provided to the model be-
fore training

get_predictions() Get the anomaly ranges predicted by the current
model

get_ranked_list([max_signals]) Returns the list of signals with computed rank.
plot_histograms([nb_cols, max_plots]) Once the histograms are computed, we can plot the

top N by decreasing ranking distance.
plot_histograms_v2(custom_ranking[, . . .])

plot_signals([nb_cols, max_plots]) Once the histograms are computed, we can plot the
top N signals by decreasing ranking distance.

set_time_periods(evaluation_start, . . .) Set the time period of analysis

3.4. Evaluation 17

Lookout for Equipment SDK

__init__(model_name, tags_df)
Create a new analysis for a Lookout for Equipment model.

Parameters

• model_name (string) – The name of the Lookout for Equipment trained model

• tags_df (pandas.DataFrame) – A dataframe containing all the signals, indexed by time

• region_name (string) – Name of the AWS region from where the service is called.

compute_histograms(index_normal=None, index_anomaly=None, num_bins=20)
This method loops through each signal and computes two distributions of the values in the time series: one
for all the anomalies found in the evaluation period and another one with all the normal values found in the
same period. It then computes the Wasserstein distance between these two histograms and then rank every
signals based on this distance. The higher the distance, the more different a signal is when comparing
anomalous and normal periods. This can orient the investigation of a subject matter expert towards the
sensors and associated components.

Parameters

• index_normal (pandas.DateTimeIndex) – All the normal indices

• index_anomaly (pandas.DateTimeIndex) – All the indices for anomalies

• num_bins (integer) – Number of bins to use to build the distributions (default: 20)

get_labels(labels_fname=None)
Get the labelled ranges as provided to the model before training

Parameters labels_fname (string) – As an option, if you provide a path to a CSV file con-
taining the label ranges, this method will use this file to load the labels. If this argument is
not provided, it will load the labels from the trained model Describe API (Default to None)

Returns A Pandas dataframe with the labelled anomaly ranges listed in chronological order with
a Start and End columns

Return type pandas.DataFrame

get_predictions()
Get the anomaly ranges predicted by the current model

Returns A Pandas dataframe with the predicted anomaly ranges listed in chronological order
with a Start and End columns

Return type pandas.DataFrame

get_ranked_list(max_signals=12)
Returns the list of signals with computed rank.

Parameters max_signals (integer) – Number of signals to consider (default: 12)

Returns A dataframe with each signal and the associated rank value

Return type pandas.DataFrame

plot_histograms(nb_cols=3, max_plots=12)
Once the histograms are computed, we can plot the top N by decreasing ranking distance. By default, this
will plot the histograms for the top 12 signals, with 3 plots per line.

Parameters

• nb_cols (integer) – Number of plots to assemble on a given row (default: 3)

• max_plots (integer) – Number of signal to consider (default: 12)

18 Chapter 3. API Documentation

Lookout for Equipment SDK

Returns

tuple containing:

• A matplotlib.pyplot.figure where the plots are drawn

• A list of matplotlib.pyplot.Axis with each plot drawn here

Return type tuple

plot_histograms_v2(custom_ranking, nb_cols=3, max_plots=12, num_bins=20)

plot_signals(nb_cols=3, max_plots=12)
Once the histograms are computed, we can plot the top N signals by decreasing ranking distance. By
default, this will plot the signals for the top 12 signals, with 3 plots per line. For each signal, this method
will plot the normal values in green and the anomalies in red.

Parameters

• nb_cols (integer) – Number of plots to assemble on a given row (default: 3)

• max_plots (integer) – Number of signal to consider (default: 12)

Returns

tuple containing:

• A matplotlib.pyplot.figure where the plots are drawn

• A list of matplotlib.pyplot.Axis with each plot drawn here

Return type tuple

set_time_periods(evaluation_start, evaluation_end, training_start, training_end)
Set the time period of analysis

Parameters

• evaluation_start (datetime) – Start of the evaluation period

• evaluation_end (datetime) – End of the evaluation period

• training_start (datetime) – Start of the training period

• training_end (datetime) – End of the training period

3.5 Scheduler

3.6 Plot

plot.plot_histogram_comparison(timeseries_1,
. . .)

Takes two timeseries and plot a histogram showing their
respective distribution of values

plot.plot_event_barh (event_details[, . . .]) Plot a horizontal bar chart with the feature importance
of each signal that contributes to the event passed as an
argument.

plot.plot_range(range_df, range_title, . . .) Plot a range with either labelled or predicted events as a
filled area positionned under the timeseries data.

continues on next page

3.6. Plot 19

Lookout for Equipment SDK

Table 10 – continued from previous page
plot.TimeSeriesVisualization(timeseries_df,
. . .)

A class to manage time series visualization along with
labels and detected events

3.6.1 plot_histogram_comparison

src.lookoutequipment.plot.plot_histogram_comparison(timeseries_1, timeseries_2, ax=None,
label_timeseries_1=None,
label_timeseries_2=None, show_legend=True,
num_bins=10)

Takes two timeseries and plot a histogram showing their respective distribution of values

Parameters

• timeseries_1 (array_like) – The first time series to plot a histogram for

• timeseries_2 (array_like) – The second time series to plot a histogram for

• ax (matplotlib.pyplot.Axis) – The ax in which to render the range plot. If None, this
function will create a figure and an ax. Default to None

• label_timeseries_1 (string) – The label for the first time series

• label_timeseries_2 (string) – The label for the second time series

• show_legend (Boolean) – True to display a legend on this histogram plot and False other-
wise

• num_bins (integer) – Number of bins to compute (defaults to 10)

3.6.2 plot_event_barh

src.lookoutequipment.plot.plot_event_barh(event_details, num_signals=10, fig_width=12)
Plot a horizontal bar chart with the feature importance of each signal that contributes to the event passed as an
argument.

Parameters

• event_details (pandas.DataFrame) – A dataframe with the sensor name and the feature
importance in two columns

• num_signals (integer) – States how many signals to plot in the bar chart (default to 10)

• fig_width (integer) – Width of the figure to plot

Returns

tuple: tuple containing:

• A matplotlib.pyplot.figure where the plot is drawn

• A matplotlib.pyplot.Axis where the plot is drawn

Return type Returns

20 Chapter 3. API Documentation

Lookout for Equipment SDK

3.6.3 plot_range

src.lookoutequipment.plot.plot_range(range_df, range_title, color, ax, column_name)
Plot a range with either labelled or predicted events as a filled area positionned under the timeseries data.

Parameters

• range_df (pandas.DataFrame) – A DataFrame that must contain at least a DateTimeIndex
and a column called “Label”

• range_title (string) – Title of the ax containing this range

• color (string) – A string used as a color for the filled area of the plot

• ax (matplotlib.pyplot.Axis) – The ax in which to render the range plot

• column_name (string) – The column from the range_df dataframe to use to plot the range

3.6.4 TimeSeriesVisualization

class src.lookoutequipment.plot.TimeSeriesVisualization(timeseries_df, data_format,
timestamp_col=None, tag_col=None,
resample=None, verbose=False)

A class to manage time series visualization along with labels and detected events

Attributes

DEFAULT_COLORS

data A pandas.DataFrame containing time series data to
plot

format Either timeseries or tabular depending on the
format of your time series.

legend_format kwargs dict to configure the legend to be displayed
when this class renders the requested plot

signal_data list of pandas.DataFrame containing the time
series data to plot

tag_col If data_format is timeseries, this argument speci-
fies what is the name of the columns that contains the
name of the tags

tags_list list of strings containing the list of all tags as-
sociated to the current dataset

timestamp_col string specifying the name of the columns that con-
tains the timestamps

3.6. Plot 21

Lookout for Equipment SDK

Methods

__init__(timeseries_df, data_format[, . . .]) Create a new instance to plot time series with differ-
ent data structure

add_labels(labels_df[, labels_title]) Add a label component to the plot to visualize the
known anomalies periods as a secondary plot under
the time series visualization panel.

add_predictions(predictions_list[, . . .]) Add a prediction component to the plot to visualize
detected events as a secondary plot under the time
series visualization panel.

add_rolling_average(window_size) Adds a rolling average over a time series plot
add_signal(signals_list) This method will let you select which signals you

want to plot.
add_train_test_split(split_timestamp[, . . .]) Add a way to visualize the split between training and

testing periods.
plot([fig_width, colors, labels_bottom, . . .]) Renders the plot as configured with the previous

function
plot_histograms([freq, prediction_index, . . .]) Plot values distribution as histograms for the top con-

tributing sensors.

__init__(timeseries_df, data_format, timestamp_col=None, tag_col=None, resample=None,
verbose=False)

Create a new instance to plot time series with different data structure

Parameters

• timeseries_df (pandas.DataFrame) – A dataframe containing time series data that
you want to plot

• data_format (string) – Use “timeseries” if your dataframe has three columns:
timestamp, values and tagname. Use “tabular” if timestamp is your first column and
all the other tags are in the following columns: timestamp, tag1, tag2. . .

• timestamp_col (string) – Specifies the name of the columns that contains the times-
tamps. If set to None, it means the timestamp is already an index (default to None)

• tag_col (string) – If data_format is “timeseries”, this argument specifies what is the
name of the columns that contains the name of the tags

• resample (string) – If specified, this class will resample the data before plotting them.
Use the same format than the string rule as used in the pandas.DataFrame.resample()
method (default to None)

• verbose (boolean) – If True, this class will print some messages along the way (defaults
to False)

add_labels(labels_df, labels_title='Known anomalies')
Add a label component to the plot to visualize the known anomalies periods as a secondary plot under the
time series visualization panel.

Parameters

• labels_df (pandas.DataFrame) – You can add one label ribbon, defined with a
dataframe that gives the start and end date of every known anomalies

• labels_title (string) – Title to be used for the known anomalies label ribbon

22 Chapter 3. API Documentation

Lookout for Equipment SDK

add_predictions(predictions_list, prediction_titles=['Detected events'])
Add a prediction component to the plot to visualize detected events as a secondary plot under the time
series visualization panel.

Parameters

• predictions_list (list of pandas.DataFrame) – You can add several predictions
ribbon. Each ribbon is defined with a dataframe that gives the start and end date of every
detected events. Several ribbons can be grouped inside a list

• prediction_titles (list of strings) – This lists contains all the titles to be used
for each prediction ribbon

add_rolling_average(window_size)
Adds a rolling average over a time series plot

Parameters window_size (integer) – Size of the window in time steps to average over

add_signal(signals_list)
This method will let you select which signals you want to plot. It will double check that the signals are,
actually available in the tags list. This method will populate the signal_data property with the list of
each dataframes containing the signals to plot.

Parameters signals_list (list of string) – A list of tag names to be rendered when you
call plot()

Raises Exception – if some of the signals are not found in the tags list

add_train_test_split(split_timestamp, train_label='Train', test_label='Evaluation')
Add a way to visualize the split between training and testing periods. The training period will stay colorful
on the timeseries area of the plot while the testing period will be greyed out.

Parameters

• split_timestamp (string or datetime) – The split date. If a string is passed, it will
be converted into a datetime

• train_label (string) – Name of the training period (will be visible in the legend)

• test_label (string) – Name of the testing period (will be visible in the legend)

plot(fig_width=18, colors={'labels': 'tab:green', 'predictions': 'tab:red'}, labels_bottom=False,
no_legend=False)

Renders the plot as configured with the previous function

Parameters fig_width (integer) – The width of the figure to generate (defaults to 18)

Returns

tuple containing:

• A matplotlib.pyplot.figure where the plots are drawn

• A list of matplotlib.pyplot.Axis with each plot drawn here

Return type tuple

plot_histograms(freq='1min', prediction_index=0, top_n=8, fig_width=18, start=None, end=None)
Plot values distribution as histograms for the top contributing sensors.

Parameters

• freq (string) – The datetime index frequence (defaults to ‘1min’). This must be a string
following this format: XXmin where XX is a number of minutes.

3.6. Plot 23

Lookout for Equipment SDK

• prediction_index (integer) – You can add several predicted ranges in your plot. Use
this argument to specify for which one you wish to plot a histogram for (defaults to 0)

• top_n (integer) – Number of top signals to plot (default: 8)

• fig_width (float) – Width of the figure generated (default: 18)

• start (pandas.DatetTime) – Start date of the range to build the values distribution for
(default: None, use the evaluation period start)

• end (pandas.DatetTime) – End date of the range to build the values distribution for
(default: None, use the evaluation period end)

Returns a figure where the histograms are drawn

Return type matplotlib.pyplot.figure

The Amazon Lookout for Equipment SDK is an open source Python package that allows data scientists and software
developers to easily build and deploy time series anomalie detection models using Amazon Lookout for Equipment.
This SDK enables to do the following:

• Build dataset schema

• Data upload to the necessary S3 structure

• Train an anomaly detection model using Amazon Lookout for Equipment

• Build beautiful visualization for your model evaluation

• Configure and start an inference scheduler

• Manage schedulers (start, stop, delete) whenever necessary

• Visualize scheduler inferences results

24 Chapter 3. API Documentation

PYTHON MODULE INDEX

s
src.lookoutequipment.dataset, 10
src.lookoutequipment.evaluation, 17
src.lookoutequipment.model, 14
src.lookoutequipment.plot, 19
src.lookoutequipment.schema, 9

25

Lookout for Equipment SDK

26 Python Module Index

INDEX

Symbols
__init__() (src.lookoutequipment.dataset.LookoutEquipmentDataset

method), 13
__init__() (src.lookoutequipment.evaluation.LookoutEquipmentAnalysis

method), 17
__init__() (src.lookoutequipment.model.LookoutEquipmentModel

method), 15
__init__() (src.lookoutequipment.plot.TimeSeriesVisualization

method), 22

A
add_labels() (src.lookoutequipment.plot.TimeSeriesVisualization

method), 22
add_predictions() (src.lookoutequipment.plot.TimeSeriesVisualization

method), 22
add_rolling_average()

(src.lookoutequipment.plot.TimeSeriesVisualization
method), 23

add_signal() (src.lookoutequipment.plot.TimeSeriesVisualization
method), 23

add_train_test_split()
(src.lookoutequipment.plot.TimeSeriesVisualization
method), 23

C
compute_histograms()

(src.lookoutequipment.evaluation.LookoutEquipmentAnalysis
method), 18

create() (src.lookoutequipment.dataset.LookoutEquipmentDataset
method), 13

create_data_schema() (in module
src.lookoutequipment.schema), 10

create_data_schema_from_dir() (in module
src.lookoutequipment.schema), 9

create_data_schema_from_s3_path() (in module
src.lookoutequipment.schema), 9

create_model_request
(src.lookoutequipment.model.LookoutEquipmentModel
attribute), 15

D
dataset_name (src.lookoutequipment.model.LookoutEquipmentModel

attribute), 14
delete() (src.lookoutequipment.dataset.LookoutEquipmentDataset

method), 13
delete() (src.lookoutequipment.model.LookoutEquipmentModel

method), 15
df_list (src.lookoutequipment.evaluation.LookoutEquipmentAnalysis

attribute), 17

G
generate_replay_data() (in module

src.lookoutequipment.dataset), 12
get_component_field_map()

(src.lookoutequipment.dataset.LookoutEquipmentDataset
method), 13

get_labels() (src.lookoutequipment.evaluation.LookoutEquipmentAnalysis
method), 18

get_predictions() (src.lookoutequipment.evaluation.LookoutEquipmentAnalysis
method), 18

get_ranked_list() (src.lookoutequipment.evaluation.LookoutEquipmentAnalysis
method), 18

I
ingest_data() (src.lookoutequipment.dataset.LookoutEquipmentDataset

method), 13

L
labelled_ranges (src.lookoutequipment.evaluation.LookoutEquipmentAnalysis

attribute), 17
list_datasets() (in module

src.lookoutequipment.dataset), 10
list_models() (in module

src.lookoutequipment.model), 14
list_models() (src.lookoutequipment.dataset.LookoutEquipmentDataset

method), 14
load_dataset() (in module

src.lookoutequipment.dataset), 10
LookoutEquipmentAnalysis (class in

src.lookoutequipment.evaluation), 17
LookoutEquipmentDataset (class in

src.lookoutequipment.dataset), 12
LookoutEquipmentModel (class in

src.lookoutequipment.model), 14

27

Lookout for Equipment SDK

M
model_name (src.lookoutequipment.evaluation.LookoutEquipmentAnalysis

attribute), 17
model_name (src.lookoutequipment.model.LookoutEquipmentModel

attribute), 14
module

src.lookoutequipment.dataset, 10
src.lookoutequipment.evaluation, 17
src.lookoutequipment.model, 14
src.lookoutequipment.plot, 19
src.lookoutequipment.schema, 9

P
plot() (src.lookoutequipment.plot.TimeSeriesVisualization

method), 23
plot_event_barh() (in module

src.lookoutequipment.plot), 20
plot_histogram_comparison() (in module

src.lookoutequipment.plot), 20
plot_histograms() (src.lookoutequipment.evaluation.LookoutEquipmentAnalysis

method), 18
plot_histograms() (src.lookoutequipment.plot.TimeSeriesVisualization

method), 23
plot_histograms_v2()

(src.lookoutequipment.evaluation.LookoutEquipmentAnalysis
method), 19

plot_range() (in module src.lookoutequipment.plot),
21

plot_signals() (src.lookoutequipment.evaluation.LookoutEquipmentAnalysis
method), 19

poll_data_ingestion()
(src.lookoutequipment.dataset.LookoutEquipmentDataset
method), 14

poll_model_training()
(src.lookoutequipment.model.LookoutEquipmentModel
method), 15

predicted_ranges (src.lookoutequipment.evaluation.LookoutEquipmentAnalysis
attribute), 17

prepare_inference_data() (in module
src.lookoutequipment.dataset), 11

S
set_label_data() (src.lookoutequipment.model.LookoutEquipmentModel

method), 15
set_off_condition()

(src.lookoutequipment.model.LookoutEquipmentModel
method), 16

set_off_conditions()
(src.lookoutequipment.model.LookoutEquipmentModel
method), 16

set_subset_schema()
(src.lookoutequipment.model.LookoutEquipmentModel
method), 16

set_target_sampling_rate()
(src.lookoutequipment.model.LookoutEquipmentModel
method), 16

set_time_periods() (src.lookoutequipment.evaluation.LookoutEquipmentAnalysis
method), 19

set_time_periods() (src.lookoutequipment.model.LookoutEquipmentModel
method), 16

src.lookoutequipment.dataset
module, 10

src.lookoutequipment.evaluation
module, 17

src.lookoutequipment.model
module, 14

src.lookoutequipment.plot
module, 19

src.lookoutequipment.schema
module, 9

T
TimeSeriesVisualization (class in

src.lookoutequipment.plot), 21
train() (src.lookoutequipment.model.LookoutEquipmentModel

method), 16

U
upload_dataset() (in module

src.lookoutequipment.dataset), 11

28 Index

	Installation, testing and development
	Dependencies
	User installation
	Development

	User Guide
	Introduction
	Dataset management
	Creating a dataset
	Ingesting data into a dataset

	Model training
	Evaluating a trained model
	Plot detected events
	Plot signal distribution

	Scheduler management

	API Documentation
	Schema
	create_data_schema_from_dir
	create_data_schema_from_s3_path
	create_data_schema

	Datasets
	list_datasets
	load_dataset
	upload_dataset
	prepare_inference_data
	generate_replay_data
	LookoutEquipmentDataset

	Models
	list_models
	LookoutEquipmentModel

	Evaluation
	LookoutEquipmentAnalysis

	Scheduler
	Plot
	plot_histogram_comparison
	plot_event_barh
	plot_range
	TimeSeriesVisualization

	Python Module Index
	Index

